When to Update the Sequential Patterns of Stream Data?

نویسندگان

  • Qingguo Zheng
  • Ke Xu
  • Shilong Ma
چکیده

In this paper, we first define a difference measure between the old and new sequential patterns of stream data, which is proved to be a distance. Then we propose an experimental method, called TPD (Tradeoff between Performance and Difference), to decide when to update the sequential patterns of stream data by making a tradeoff between the performance of increasingly updating algorithms and the difference of sequential patterns. The experiments for the increasingly updating algorithm IUS on the alarm data show that generally, as the size of incremental windows grows, the values of the speedup and the values of the difference will decrease and increase respectively. It is also shown experimentally that the incremental ratio determined by the TPD method does not monotonically increase or decrease but changes in a range between 20 and 30 percentage for the IUS algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Efficiently Mining High Utility Sequential Patterns in Static and Streaming Data

High utility sequential pattern (HUSP) mining has emerged as a novel topic in data mining. Although some preliminary works have been conducted on this topic, they incur the problem of producing a large search space for high utility sequential patterns. In addition, they mainly focus on mining HUSPs in static databases and do not take streaming data into account, where unbounded data come contin...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

Incremental Mining of Closed Sequential Patterns in Multiple Data Streams

Sequential pattern mining searches for the relative sequence of events, allowing users to make predictions on discovered sequential patterns. Due to drastically advanced information technology over recent years, data have rapidly changed, growth in data amount has exploded and real-time demand is increasing, leading to the data stream environment. Data in this environment cannot be fully stored...

متن کامل

Mining Web Sequential Patterns Incrementally with Revised PLWAP Tree

Since point and click at web pages generate continuous data stream, which flow into web log data, old patterns may be stale and need to be updated. Algorithms for mining web sequential patterns from scratch include WAP, PLWAP and apriori-based GSP. An incremental technique for updating already mined patterns when database changes, which is based on an efficient sequential mining technique like ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003